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Abstract

Purpose—Gene expression profiling can uncover biologic mechanisms underlying disease and is 

important in drug development. RNA sequencing (RNA-seq) is routinely used to assess gene 

expression, but costs remain high. Sample multiplexing reduces RNAseq costs; however, 

multiplexed samples have lower cDNA sequencing depth, which can hinder accurate differential 

gene expression detection. The impact of sequencing depth alteration on RNA-seq–based 

downstream analyses such as gene expression connectivity mapping is not known, where this 

method is used to identify potential therapeutic compounds for repurposing.

Methods—In this study, published RNA-seq profiles from patients with brain tumor (glioma) 

were assembled into two disease progression gene signature contrasts for astrocytoma. Available 

treatments for glioma have limited effectiveness, rendering this a disease of poor clinical outcome. 
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Gene signatures were subsampled to simulate sequencing alterations and analyzed in connectivity 

mapping to investigate target compound robustness.

Results—Data loss to gene signatures led to the loss, gain, and consistent identification of 

significant connections. The most accurate gene signature contrast with consistent patient gene 

expression profiles was more resilient to data loss and identified robust target compounds. Target 

compounds lost included candidate compounds of potential clinical utility in glioma (eg, suramin, 

dasatinib). Lost connections may have been linked to low-abundance genes in the gene signature 

that closely characterized the disease phenotype. Consistently identified connections may have 

been related to highly expressed abundant genes that were ever-present in gene signatures, despite 

data reductions. Potential noise surrounding findings included false-positive connections that were 

gained as a result of gene signature modification with data loss.

Conclusion—Findings highlight the necessity for gene signature accuracy for connectivity 

mapping, which should improve the clinical utility of future target compound discoveries.

Introduction

Gene expression profiling examines the altering state of the transcriptome at many levels. In 

cancer research, gene expression profiling has been essential in assessing biologic function, 

pathogenesis, and biomarker discovery.1,2 In the past, microarrays have been used to 

measure gene expression; however, methodological drawbacks include background 

hybridization, reliance on established probes, and limited dynamic range.3–5 A superior 

method available for gene expression measurement is RNA sequencing (RNA-seq) of cDNA 

transcripts in a high-throughput manner. Sequencing reads are then aligned to a reference 

genome or transcriptome and mapped to an identified region. Transcript abundance is 

estimated, facilitating the comparison of gene expression profiles. RNA-seq has wider 

analytical capabilities, including single nucleotide variants, insertion-deletions, gene splice 

variants, post-transcriptional modifications, and gene fusion detection, but remains costly.6,7 

Experimental techniques developed to minimize sequencing costs include sample 

multiplexing. Multiplexing involves labeling each sample library with a barcode identifier, 

allowing multiple libraries to be pooled and sequenced simultaneously, reducing costs.7–10 

Smaller volumes of RNA are analyzed for multiplexed samples; thus, the downside to 

multiplexing is reduced sequencing depth for this library type.

Accurate assessment of transcripts depends on length, abundance, and mappability to the 

reference and sufficient sequencing depth, particularly for genes with low transcript 

abundance.11,12 Sequencing depth alterations can affect the detection of differentially 

expressed genes (DEGs) and potentially the accuracy of RNA-seq–based downstream 

analysis. Few studies have assessed the impact of sequencing depth alterations on RNA-seq 

downstream applications.13 More studies are required, particularly to assess applications 

that rely on precise gene signatures, informative in classifying cancer subtypes and improved 

prognostic and predictive outcomes.14,15 A gene signature is summarized by DEGs that 

collectively represent the most prominent features of a cancer subtype or disease progression 

phenotype. If a gene signature is compiled using gene expression profiles with low 

sequencing depth, then it may not be fully representative of that phenotype. This could be 

particularly problematic for connectivity mapping that examines a gene expression signature 
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contrast with the aim of predicting potentially therapeutic US Food and Drug–approved 

target compounds for repurposing.16

There is urgent need for new targeted therapies for gliomas, which are the most common 

form of primary brain tumor. Gliomas can be classified from grade I to IV on the basis of 

histologic and molecular information.17 Depending on the cell of origin, each neoplasm is 

classified as an astrocytoma, oligodendroglioma, or ependymoma. Diffuse astrocytoma 

(WHO grade II) can demonstrate progression to anaplastic astrocytoma (WHO grade III) 

and malignant glioblastoma (GBM; WHO grade IV). Patient survival beyond 5 years is 58% 

for grade II astrocytoma, 23.6% for grade III anaplastic astrocytoma, and only 5% for grade 

IV GBM.18–20 Patients with GBM undergo concurrent chemoradiotherapy with 

temozolomide according to the Stupp protocol and adjuvant chemotherapy.21 Patients with 

anaplastic glioma may undergo radiotherapy with or without chemotherapy, depending on 

tumor molecular profile.22 Low-grade gliomas with poor prognosis may also be considered 

for adjuvant treatment.23 There has been minimal improvement in overall survival (14.6 v 
12.2 months)24; thus, new treatments are urgently sought for glioma. Herein, reference gene 

signatures were compiled from publically available sequenced tumors for astrocytoma 

disease progression.2 Subsampling was applied to simulate sequencing depth alterations of 

gene signatures, and the performance of connectivity mapping was assessed. Results reveal 

that information loss to gene signatures significantly affects target compound robustness.

Methods

Published whole transcriptome sequencing data of brain tumor biopsy specimens from 

adults (accession: GSE48865; Bao et al2) was downloaded from the Sequence Read 

Archive.25 On average, samples had 50 million reads each. Reads were quality controlled 

using Trimmomatic software26 and aligned using Bowtie2,27 allowing one mismatch 

against the human genome version hg38.28 Aligned reads were mapped to genes from the 

GRCh38.81 annotation29 using samExploreR software.30,31

To benchmark a diverse range in performance of the RNA-seq analysis, mapped reads were 

subsampled to simulate samples with a range of lower cDNA library sequencing depths 

using a bioinformatics pipeline32 (Appendix Fig A1; Data Supplement). RNA-seq reads for 

transcript-level abundance to gene level were summarized and normalized using the relative 

log expression method and analyzed for differential expression using full (f = 1.0) and 

simulated samples with DESeq2.33 Gene expression signature contrasts representative of 

astrocytoma disease progression were compiled for low to high (L-H) and high to high (H-

H)–grade astrocytoma (Data Supplement). Gene signature contrasts were assessed for 

consistency in a heatmap using pheatmap R package (http://CRAN.R-project.org/

package=pheatmap). The impact of information loss to gene signatures for DEGs, gene 

ontology (GO) terms, and target compound detection was assessed using differential 

expression, GO, and gene expression connectivity mapping analysis, respectively, with 

DESeq2, GOseq, and the QUB Accelerated Drug and Transcriptomic Connectivity 

(QUADrATiC) software33–35 (Data Supplement). The reproducibility of significant 

connections to the Library of Integrated Cellular Signatures identified for all cell lines and 

neuronal specific cell lines (Data Supplement) by QUADrATiC was investigated16,36–38 
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(Data Supplement). Results and associated false discovery rates (FDRs) were visualized 

using the R packages VennDiagram and ggplot2.39,40

Results

Assessment of the L-H and H-H Gene Expression Signatures

L-H (Dataset_I) and H-H (Dataset_II) gene signature contrasts comprised 47 and 33 

patients, respectively (Data Supplement). Some 6,648 DEGs were identified for Dataset_I, 

which reduced to 2,550 after filtering (Fig 1A). Just 608 DEGs were identified for 

Dataset_II, reducing to 327 after filtering (Fig 1B). Each gene signature contrast clustered 

into two separate branches, which mostly stratified patients on the basis of disease grade 

(Figs 1C and 1D). Dataset_I outperformed Dataset_II; all but one patient clustered according 

to disease grade. For each gene signature contrast, no outliers outside of the two disease 

grades were identified.

Impact of Information Loss to Gene Signatures for DEG and GO Detection

For Dataset_I, initial reductions in data analyzed (f = 0.8 to 1.0) did not greatly affect the 

number of DEGs detected (Fig 1A). However, the rate of loss of DEGs increased after f = 

0.8. For Dataset_II, data loss was immediate, and DEG detection reduced equally for every 

fraction analyzed, as indicated by the linear relationship (Fig 1B). Variation in the number of 

DEGs detected was lower for Dataset_I compared with Dataset_II, as evidenced by smaller 

confidence intervals. When data input was reduced, the FDR for the number of DEGs 

detected increased linearly and by approximately the same amount for both data sets 

(Appendix Fig A2). Dataset_I gene signature therefore demonstrated better resilience to data 

loss for DEG detection compared with Dataset_II.

For the full data set (f = 1.0), > 200 GO terms described the functions of the DEGs identified 

for Dataset_I (Appendix Fig A3A). Thus, heterogeneous biologic functions are involved in 

low- to high-grade astrocytoma disease transition. For Dataset_I, only small decreases in GO 

terms were detected using data fractions between f = 1.0 and 0.1 (Appendix Fig A3A). Thus, 

GO term detection was more stable compared with DEGs when Dataset_I gene signature 

had data loss. The impact of data loss on FDR for GO term detection was on the same scale 

as that observed for DEG detection for Dataset_I (Fig A3B). Comparatively fewer GO 

terms, just three, described the DEGs in Dataset_II for the full data set. Given this low 

number, which reduced to zero on f = 0.5, GO results for subsampled Dataset_II are not 

depicted.

Impact of Information Loss to Gene Signatures Used in Gene Expression Connectivity 
Mapping

For the full data set, a greater number of significant reverse (rev) and progress (prog) 

connections were identified for Dataset_I compared with Dataset_II (Fig 2A). For Dataset_I, 

data loss did not greatly affect the number of significant rev and prog connections detected. 

With increasing data loss, Dataset_I significant connections remained relatively stable (f = 

1.0 to 0.7) and then slightly increased. For Dataset_II, rev significant connections decreased 

steadily with data loss, whereas prog connections were slightly more stable. Dataset_I 
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displayed less variability in the number of significant connections identified, compared with 

Dataset_II, as evidenced by smaller confidence intervals. For both Dataset_I and Dataset_II, 

FDR for the number of significant connections increased steadily with decreasing data used 

(Fig 2B). However, FDR was three-fold greater for Dataset_II and quickly increased to 

approximately 10% and 20% for rev and prog connections, respectively, when just 1% of 

reads were removed (f = 0.99). For target compound identification, Dataset_I was therefore 

more resilient to alterations in cDNA sequencing depth compared with Dataset_II.

The impact of data loss to gene signatures and the reproducibility of connectivity mapping is 

presented in Figures 3-5. When full data sets were used for the gene signature (f = 1.0), 

target compound identification was consistent, and mostly the same compounds were 

identified between iterations (Figs 3, 4A, and 4C; frequency = 1.0). With data loss to the 

gene signature (f = 0.01, 0.5), fewer compounds were consistently identified, and a higher 

number of target compounds were detected at low frequencies of iterations. For example, 

3,135 rev connections were identified for Dataset_I using f = 1.0; this increased to 

approximately 5,000 when subsampled to f = 0.01, but approximately 60% of compounds 

were infrequently detected (Figs 3B and 3C). Proportion of significant connections that are 

consistently identified decreases with data loss, but the impact was less for Dataset_I. For 

Dataset_I, when 50% of reads were removed, approximately 62.5% rev (approximately 

2,500 of 4,000) and approximately 50% prog significant connections (approximately 1,500 

of 3,000) were identified with every iteration (Fig 3). For Dataset_II, when 50% of reads 

were removed, just approximately 13% rev (approximately 400 of 3,000) and 9% prog 

significant connections (approximately 180 of 2,000) were identified with every iteration 

(Fig 4). No robust calls were identified for Dataset_II at f = 0.01, and little improvement was 

observed when half the reads were included (f = 0.5; Fig 4). Gene signatures differed in the 

proportion of significant connections that were consistently identified when cDNA 

sequencing depth was reduced. When affected by data loss, connectivity mapping results 

were more robust for Dataset_I compared with the Dataset_II gene signature.

Reducing data to the gene signature led to the loss, gain, and consistent identification of 

significant connections to target compounds (Fig 5). Compounds consistently identified 

between data fractions can be seen within the Venn diagram intersections. For Dataset_I, a 

large proportion of the significant connections across all cell lines (69%; 2,195 of 3,135) and 

neuronal-specific cell lines (70%; 144 of 205) were detected with all data fractions. 

Similarly for Dataset_II, a proportion of the significant connections across all cell lines (7%; 

100 of 1,339) and neuronalspecific cell lines (5%; nine of 172) were detected with all data 

fractions. The gain in significant connections can be seen in the relative complement 

sections of the smaller data fractions in the Venn diagrams. For example, 350 and 105 

compounds were detected across all cell lines for Dataset_I, f = 0.01, that were not identified 

by the full data set (Fig 5A). These connections were false positives, because they had not 

been detected with the full gene signature. Last, we examined the loss of significant 

connections to target compounds for Dataset_I and II. When 50% of the reads were 

removed, nine and 27 target compounds identified for neuronalspecific cell lines were lost, 

respectively, for Dataset_I and II (Figs 5C and 5D; Table 1). Thus, for Dataset_II, more 

target compounds identified by the full gene signature were lost, and some of these included 

compounds of potential clinical utility for glioma, such as suramin and dasatinib (Table 1). 
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A comparison of the rate of impact of data loss on GO terms and significant connections 

detection for Dataset_I can be seen by comparing Figures A3 and 2A.

Discussion

Understanding molecular pathways and regulatory networks driving cancer is essential for 

the development of new therapies. Gene expression profiling using RNA-seq has led to the 

development of clinically relevant gene signatures that are informative for cancer subtypes.

14,15 RNAseq experimental approaches such as sample multiplexing reduce cDNA 

sequencing depth and potentially affect gene signature accuracy. This information loss may 

mask the true biologic variability of a gene signature. Herein, sequence depth alterations in 

gene signatures were simulated and the impacts of data loss for gene expression connectivity 

mapping investigated. Two gene signature contrasts representing astrocytoma disease 

progression were analyzed. Assessment of their global stratification ability revealed that the 

WHO grade II to III contrast (L-H; Dataset_I) outperformed the WHO grade III to IV 

contrast (H-H; Dataset_II), whereby more patient gene expression profiles matched their 

WHO grade classifications. Results support the subjective nature of tumor classification, 

which has interobserver variability.41 Gene signatures provided a framework to assess 

connectivity mapping output for a well-performing accurate versus a poorer-performing less 

accurate contrast.

Characterization of the disease progression gene signatures revealed they differed in biologic 

complexity. L-H gene signature had ten-fold more DEGs (approximately 2,550) compared 

with the H-H gene signature (327). Results demonstrated the possibility that more genes are 

involved in low- to high-grade astrocytoma disease transition. After data reduction, DEG 

loss was not immediate for the L-H gene signature, but with lowering fractions DEG loss 

increased. For the H-H gene signature, there was immediate and steady DEG loss with 

reduced data input. FDR for DEG detection increased linearly for both gene signatures; 

however, the range of FDR values was lower for the L-H gene signature. Thus, the L-H gene 

signature was more resilient to data loss for DEG detection and had greater test sensitivity 

compared with the H-H gene signature. Gene signatures also differed in their resilience to 

data loss for the detection of significant connections to target compounds. Overall, the 

number of significant connections detected for the L-H gene signature was greater, most 

likely explained by the heterogeneous biologic mechanisms involved in low- to high-grade 

astrocytoma transition. With data loss, both rev and prog significant connections remained 

relatively stable for the L-H gene signature. Data loss led to a steady decrease in rev 

significant connections for the H-H gene signature; however, prog connections were initially 

more stable. For both gene signatures, the FDR of significant connections increased with 

data loss. Overall FDR values and CIs were smaller for the L-H gene signature. For 

comparative purposes, consider an FDR of 0.1 as an acceptable threshold, where one in 

every 10 significant connections is a false positive. With data loss, this FDR threshold was 

reached by the L-H and H-H gene signatures, respectively, when 70% and just 1% of reads 

were removed. Thus, the L-H gene signature was more resilient to data loss for the detection 

of significant connections to target compounds using connectivity mapping.

Stupnikov et al. Page 7

JCO Precis Oncol. Author manuscript; available in PMC 2018 October 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Subsampling of gene signatures for connectivity mapping revealed that the suite of 

significant connections to target compounds became modified with data loss. Notably, some 

connections to target compounds of potential clinical utility were lost when the reads were 

reduced to 50%. Compounds lost by the H-H gene signature (WHO grade III to IV) included 

suramin, lopinavir, dasatinib, and vincristine, which have already been considered as glioma 

treatments. Suramin, an anticancer agent, inhibits the binding of growth factors understood 

to play a role in glioma progression, angiogenesis, and radioresistance and has been used to 

treat newly diagnosed GBMs.42,43 Lopinavir, a protease inhibitor, has reached phase II 

clinical trials for the treatment of high-grade glioma.44 Dasatinib, a kinase inhibitor that acts 

on members of the Src family of kinases, is well studied in glioma and has shown preclinical 

promise.45 Vincristine, a spindle poison, is used in combination with procarbazine and 

lomustine to treat high-grade glioma and has also been successful in a phase III trial for the 

treatment of low-grade gliomas.22,46,47 Reductions in transcript abundance probably led to 

the loss of low-abundance genes from the full gene signature and altered the DEGs detected, 

leading to the loss of these connectivity mapping connections. Perhaps lowabundance genes 

that closely characterize the disease phenotype may offer the greatest potential for target 

compound discovery. If this is the case, then the subsampling approach described herein 

could potentially identify these important links to target compounds. Fewer significant 

connections identified by the full data sets were lost by the L-H gene signature compared 

with the H-H gene signature, suggesting it was more resilient to data loss. It was interesting 

to note that reduction in cDNA sequencing depth of gene signatures also led to the gain of 

significant connections to target compounds. Indeed, more significant connections were 

identified when fewer data were used for both gene signatures; however, few of these 

connections were consistently identified between iterations. A greater proportion of 

significant connections were consistently identified with all iterations for the L-H gene 

signature compared with the H-H gene signature. For connections that were consistently 

identified, these may have related to the most highly expressed and abundant DEGs in the 

gene signature contrast. Similarly, in another subsampling RNA-seq study of healthy 

organisms from multiple taxa, highly expressed genes regulating metabolism and 

pathogenesis of disease were consistently identified even when downsampling RNA-seq 

reads to only 1 million reads,13 thereby corroborating our findings from diseased tumors.

Results highlight the need for determining the optimal cDNA sequencing depth for 

accurately identifying DEGs when compiling gene signatures. In the future, RNA standard 

and spike-in controls may be useful to inform RNA-seq best practices.48 The accuracy of a 

gene signature was particularly important when carrying out additional downstream 

analyses, such as connectivity mapping. Information loss to gene signatures led to erroneous 

and false target compound discoveries. Gene signatures with consistent sample classification 

and gene expression profiles were more resilient to data loss and provided robust target 

compound discoveries. Given the instability of gene expression, perhaps using ontology 

types or ontotypes49 to characterize contrast phenotypes may be a more reliable approach 

compared with gene lists in connectivity mapping. Herein, we demonstrate the utility of 

QUADrATiC software at identifying US Food and Drug Administration–approved 

compounds that can be repurposed for glioma. Stringent filtering of connectivity mapping 

results is required to identify reliable significant connections. Subsampling revealed that the 
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connections that were sensitive to data loss were linked to target compounds of potential 

clinical utility in glioma. These connections may have the best clinical promise for drug 

repurposing. Other target compounds sensitive to data loss are being tested for their biologic 

efficacy against glioma stem cells using clonogenic cell survival assays and Western blot 

analyses in ongoing studies by this research group. For the wider identification of potential 

therapeutic compounds for repurposing in glioma, gene signatures for oligodendroglioma 

and ependymoma disease progression could be analyzed using connectivity mapping in the 

future.
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Fig 1. 
Effect of decreased cDNA library sequencing depth on the number of differentially 

expressed genes (DEGs) detected from (A) Dataset_I, and (B) Dataset_II gene signatures 

(Data Supplement). Visualization of the global stratification ability of (C) Dataset_I, low to 

high (L-H), and (D) Dataset_II, high to high (H-H) gene signatures. Dataset_I is composed 

of astrocytomas (ASTRO) and anaplastic astrocytomas (aASTRO). Dataset_ II is composed 

of aASTRO and secondary glioblastomas (sGBM). Heatmap was generated using 

unsupervised hierarchical clustering with the full RNA-seq data (f = 1) and depicts the gene 

expressional patterns of the top 100 differentially expressed genes identified between the 

gene signature contrast groups. The WHO disease grades of samples as determined by Bao 

et al2 are overlaid.
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Fig 2. 
(A) Effect of decreased cDNA library sequencing depth on the number of significant 

connections detected by connectivity mapping for Dataset_I and II gene signatures. (B) 

False discovery rate (FDR) of the number of significant connections detected in the 

connectivity mapping for Dataset_I and II gene signatures. Significant connections that 

potentially could progress (prog) or reverse (rev) the disease phenotype and FDRs are 

plotted against the data fraction included in the analysis (f).
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Fig 3. 
Frequency of progress (prog) and reverse (rev) significant connections to target compounds 

identified for Dataset_I and II gene signatures. Results for three different subsampled data 

fractions (f = 0.01, 0.5, 1) each with 25 iterations are presented.
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Fig 4. 
Frequency of progress (prog) and reverse (rev) significant connections to target compounds 

identified for Dataset_II gene signatures. Results for three different subsampled data 

fractions (f = 0.01, 0.5, 1) each with 25 iterations are presented.
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Fig 5. 
Effect of decreased cDNA library sequencing depth on the number of significant 

connections to target compounds identified that could potentially reverse the disease 

phenotype. Significant connections to target compounds identified across all cell lines using 

(A) Dataset_I and (B) Dataset_II gene signatures with subsampling (0.01, 0.1, 0.5, 1) are 

illustrated in the Venn diagrams. Significant connections to target compounds identified 

from the neuronal derived cell lines using (C) Dataset_I and (D) Dataset_II across gene 

signatures are also compared.
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Table 1

A Comparison of the Top 50 Target Compounds Identified for Full and Subsampled Dataset_I (WHO grade II 

to III) and Dataset_II (WHO grade III to IV) Gene Signature Contrasts That Can Potentially Reverse the 

Disease Phenotype

Gene Signature for Dataset_I (glioma WHO grade II to III) Gene Signature for Dataset_II (glioma WHO grade III to IV)

No.

Target Compounds Not 
Identified in
the Subsampled Data Set 
(f = 0.5; ie,
difference)

Target Compounds Identified by 
Both
Full (f = 1.0) and Subsampled 
Data
Sets (f = 0.5; ie, overlap)

Target Compounds Not 
Identified in the
Subsampled Data Set (f = 
0.5; ie, difference)

Target Compounds Identified by
Both Full (f = 1.0) and Subsample
Data Sets(f = 0.5; ie, overlap)

1 Acitretin (NEU.KCL) Simvastatin (NEU.KCL) Trifluridine (NPC) Chlorprothixene (NEU)

2 Carbidopa (NPC) Niclosamide (NPC) Tolazamide (NEU) Amiodarone (NEU.KCL)

3 Remoxipride (NEU) Alendronic acid (NEU.KCL) Pivmecillinam (NPC) Cefixime (NEU)

4 Ceforanide (NEU) Nimodipine (NEU.KCL) Dexamethasone (NPC) Amiodarone (NEU)

5 Caffeine (NEU) Sorafenib (NEU) Sulindac (NEU.KCL) Vorinostat (NEU)

6 Linezolid (NPC) Sorafenib (NEU.KCL) Icosapent (NEU.KCL) Vincristine (NPC)

7 Amantadine (NPC) Chlorpromazine (NEU.KCL) Prostaglandin-E1 (NPC) Ouabain (NPC)

8 Aprepitant (NPC) Fluvastatin (FIBRNPC) Suramin (NPC) Irinotecan (NPC)

9 Loperamide (FIBRNPC) Vorinostat (FIBRNPC) Imiquimod (NPC) Thalidomide (NEU)

10 Axitinib (NEU) Vincristine (NEU) Amiodarone (NPC)

11 Zonisamide (NPC) Floxuridine (NPC) Clofarabine (NEU)

12 Carbidopa (FIBRNPC) Ruxolitinib (NEU) Amsacrine (NPC)

13 Ephedrine (NEU.KCL) Lopinavir (NPC) Vinorelbine (NEU)

14 Flutamide (NEU) Vardenafil (NPC) Decitabine (NEU)

15 Rivaroxaban (NEU) Paroxetine (NPC) Chlortalidone (NPC)

16 Reserpine (NPC) Celecoxib (NPC) Tranylcypromine (NPC)

17 Tolcapone (NEU.KCL) Buspirone (NEU) Glibenclamide (NPC)

18 Simvastatin (NPC) Lapatinib (NPC) Triflupromazine (NEU)

19 Risperidone (NEU.KCL) Fluoxetine (NEU) Chlorhexidine (NEU)

20 Cabergoline (NPC) Gemfibrozil (NEU.KCL) Mianserin (NEU)

21 Chloroquine (NPC) Quetiapine (NPC) Floxuridine (NEU)

22 Metformin (NEU.KCL) Dasatinib (NPC) Vorinostat (NEU.KCL)
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Gene Signature for Dataset_I (glioma WHO grade II to III) Gene Signature for Dataset_II (glioma WHO grade III to IV)

No.

Target Compounds Not 
Identified in
the Subsampled Data Set 
(f = 0.5; ie,
difference)

Target Compounds Identified by 
Both
Full (f = 1.0) and Subsampled 
Data
Sets (f = 0.5; ie, overlap)

Target Compounds Not 
Identified in the
Subsampled Data Set (f = 
0.5; ie, difference)

Target Compounds Identified by
Both Full (f = 1.0) and Subsample
Data Sets(f = 0.5; ie, overlap)

23 Clonidine (NEU.KCL) Riluzole (NPC) Diclofenac (NEU)

24 Imatinib (FIBRNPC) Alfuzosin (NPC) Tetrabenazine (NEU)

25 Cerulenin (NEU.KCL) Fenoterol (NPC) Bezafibrate (NEU.KCL)

26 Rosiglitazone (NEU) Diloxanide (NPC) Sorafenib (NPC)

27 Gefitinib (NEU) Chloroxine (NPC) Podophyllotoxin (NPC)

28 Meloxicam (NPC) Chloroquine (NEU.KCL)

29 Loperamide (NPC) Riluzole (NEU.KCL)

30 Vorinostat (NPC) Losartan (NPC)

31 Triclosan (NPC) Trifluoperazine (NPC)

32 Gemfibrozil (NEU) Quinapril (NPC)

33 Benzonatate (NEU) Progesterone (NEU)

34 Mirtazapine (NEU) Tenofovir (NPC)

35 Nicergoline (NEU) Pimozide (NEU.KCL)

36 Tetrabenazine (NEU.KCL) Proxymetacaine (NPC)

37 Icosapent (NEU.KCL) Suramin (NEU)

38 Gemfibrozil (NEU.KCL) Loperamide (NEU.KCL)

39 Zonisamide (NEU) Dinoprostone (NEU)

40 Tolcapone (NEU) Dasatinib (NEU)

41 Fluspirilene (FIBRNPC) Trimipramine (NEU)

42 Levocabastine (NEU) Teniposide (NPC)

43 Prochlorperazine (NPC) Aprepitant (NPC)

44 Etodolac (NEU) Menadione (NPC)

45 Progesterone (NEU.KCL) Estradiol (NEU.KCL)

46 Fluoxetine (NEU) Vinorelbine (NPC)

47 Sertraline (NPC) Anagrelide (NPC)

48 Estradiol (FIBRNPC) Reboxetine (NPC)
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Gene Signature for Dataset_I (glioma WHO grade II to III) Gene Signature for Dataset_II (glioma WHO grade III to IV)

No.

Target Compounds Not 
Identified in
the Subsampled Data Set 
(f = 0.5; ie,
difference)

Target Compounds Identified by 
Both
Full (f = 1.0) and Subsampled 
Data
Sets (f = 0.5; ie, overlap)

Target Compounds Not 
Identified in the
Subsampled Data Set (f = 
0.5; ie, difference)

Target Compounds Identified by
Both Full (f = 1.0) and Subsample
Data Sets(f = 0.5; ie, overlap)

49 Fluspirilene (NPC) Mycophenolate-mofetil (NPC)

50 Bisoprolol (NPC) Raloxifene (NPC)

NOTE. Target compounds identified by both the full (f = 1.0) and the subsampled (f = 0.5) data sets (ie, overlap) are listed in order of significance. 
Target compounds lost by the subsampled dataset are also listed (ie, those affected by information loss). The cell lines in which the significant 
connection to the gene signature was identified are given in parenthesis (Data Supplement).
Abbreviations: FIBRNPC: induced pluripotent stem cells; NEU, cells terminally differentiated to be neurons. NEU.KCL, cells terminally 
differentiated to be neurons and exposed to potassium chloride solution to activate neurons; NPC, cells differentiated from induced pluripotent stem 
cells but not terminally differentiated.
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